In Chapter 5, we draw lower and upper trend line to identify classic chart patterns but in this chapter we use Chapter 6 Fibonnaci Golden Ratios to measure harmonic chart patterns. Most harmonic patterns have 5 phases forming XABCD pattern. To quickly identify them is to find 2 mountains for bullish harmonic patterns and 2 wells for bearish harmonic patterns. The next thing to see is whether one of the mountains or wells is shorter than the other. Finally, the middle point is higher than the first and last point for bullish harmonic patterns and lower than the first and last point for bearish harmonic patterns. In short should look similar to an imperfect “M” letter for bullish harmonic patterns and imperfect “W” letter for bearish harmonic patterns.
The harmonic patterns are said to be inspired from music and wave theories of harmonic ratios. For example from José Rodríguez Alvira, Harmonic Series, an Octave have a ratio of 130 Hz / 65 Hz = 2. Harmonic patterns are defined by the measurements of Fibonacci Golden Ratios on the XABCD pattern.
To measure a harmonic pattern after identifying one:
In trading view, there is XABCD pattern tool where we do not need to measure manually like the previous steps for example in Metatrader. For upcoming trades, harmonic traders predicts the next Fibonacci Retracement Golden Ratio. Then they put a buy or sell limit with a certain stop loss percentage for example 5%. The previous examples are Bullish Gartley harmonic pattern. I found the Forex market having very precise Fibonacci Golden Ratio numbers when harmonic pattern occurs but not so precise with the cryptocurrency market especially if we use the candle’s shadow instead of the closing price. This is probably because the market capitulation is still not high enough in cryptocurrency to suppress many market manipulation. Therefore, expect certain degree of tolerance in the Fibonacci Retracement measurements.
The most popular harmonic pattern is Gartley. After the impulsive phase, there are no extreme price fluctuation in the correction phase. The Fibonacci Golden Ratios are as below:
Bat harmonic pattern looks like a bat’s wings which are long but narrow. The distance between the middle and the first and the last points are long while the distance between the middle and its neighboring points are short. The Fibonacci Golden Ratios are as below:
Butterfly harmonic pattern looks like a butterfly’s wings. While in Gartly, one of the wing is smaller than the other but in Butterfly the last point breaks the price line of the first point making both wings equal. The Fibonacci Golden Ratios are as below:
I do not know why they call this the Crab Harmonic Pattern. Maybe because crabs walks sideways and their pinches which is represented by one of its side longer then the other? The Fibonacci Golden Ratios are as below:
The new cypher harmonic pattern I see as the reverse mountains, reverse wings, or reverse sides of any harmonic patterns where usually the left side is higher than the right side, here the right side is higher.
Source: http://chartreaderpro.com/harmonic-pattern-ratios/.
Name | XB | AC | BD | XD |
---|---|---|---|---|
Max Bat | 0.382 - 0.618 | 0.382 - 0.886 | 1.272 - 2.618 | 0.886 |
Max Gartley | 0.382 - 0.618 | 0.382 - 0.886 | 1.128 - 2.236 | 0.618 - 0.786 |
Alt Shark 2 | 0.446 - 0.618 | 0.618 - 0.886 | 1.618 - 2.618 | 0.886 |
Anti Nen star | 0.5 - 0.786 | 0.467 - 0.707 | 1.618 - 2.618 | 0.786 |
Leonardo | 0.5 | 0.382 - 0.886 | 1.128 - 2.618 | 0.786 |
Anti New Cypher | 0.5 - 0.786 | 0.467 - 0.707 | 1.618 - 2.618 | 1.272 |
Max Butterfly | 0.618 - 0.886 | 0.382 - 0.886 | 1.272 - 2.618 | 1.272 - 1.618 |
Butterfly 113 | 0.786 - 1 | 0.618 - 1 | 1.128 - 1.618 | 1.128 |
Alt Shark 1 | 0.446 - 0.618 | 0.618 - 0.886 | 1.618 - 2.618 | 1.128 |
Deep Crab | 0.886 | 0.382 - 0.886 | 2.618 - 3.618 | 1.618 |
A Crab | 0.276 - 0.446 | 1.128 - 2.618 | 1.618 - 2.618 | 0.618 |
New Cypher | 0.382 - 0.618 | 1.414 - 2.14 | 1.272 - 2 | 0.786 |
A Butterfly | 0.382 - 0.618 | 1.128 - 2.618 | 1.272 | 0.618 - 0.786 |
Shark 1 | 0.382 - 0.618 | 1.128 - 1.618 | 1.618 - 2.236 | 0.886 |
A Bat | 0.382 - 0.618 | 1.128 - 2.618 | 2 - 2.618 | 1.128 |
Shark 2 | 0.382 - 0.618 | 1.128 - 1.618 | 1.618 - 2.236 | 1.128 |
Nen star | 0.382 - 0.618 | 1.414 - 2.14 | 1.272 - 2 | 1.272 |
Alt Bat | 0.382 | 0.382 - 0.886 | 2 - 3.618 | 1.128 |
Navarro 200 | 0.382 - 0.786 | 0.886 - 1.128 | 0.886 - 3.618 | 0.886 - 1.128 |
A Gartley | 0.618 - 0.786 | 1.128 - 2.618 | 1.618 | 1.272 |
121 | 0.5 - 0.786 | 1.128 - 3.618 | 0.382 - 0.786 | 0.382 - 0.786 |
White Swan | 0.382 - 0.786 | 2 - 4.237 | 0.5 - 0.886 | 0.238 - 0.886 |
A 3 Drives | 0.618 - 0.786 | 1.272 - 1.618 | 0.618 - 0.786 | 0.13 - 0.886 |
Partizan 2 | 0.128 - 3.618 | 1.128 - 1.618 | 1.618 - 2.236 | 0.618 - 3.618 |
A 121 | 1.272 - 2 | 0.5 - 0.786 | 1.272 - 2 | 1.272 - 2.618 |
3 Drives | 1.272 - 1.618 | 0.618 - 0.786 | 1.272 - 1.618 | 1.618 - 2.618 |
Black swan | 1.382 - 2.618 | 0.236 - 0.5 | 1.128 - 2 | 1.128 - 2.618 |
HENRY – David | 0.128 - 2 | 0.44 - 0.618 | 0.618 - 0.886 | 0.618 - 1.618 |
STRONG HENRY – David |
0.128 - 2.618 | 0.44 - 0.618 | 0.618 - 0.886 | 0.618 - 1.618 |
May-00 | 1.128 - 1.618 | 1.618 - 2.236 | 0.5 - 0.618 | 0.5 - 0.618 |
DAVID VM 1 | 0.128 - 1.618 | 0.382 | 1.618 | 0.618 - 3.618 |
DAVID VM 2 | 1.618 - 3.618 | 0.382 | 1.618 | 0.618 - 7.618 |
SNORM | 0.9 - 1.1 | 0.9 - 1.1 | 0.9 - 1.1 | 0.618 - 1.618 |
COL Poruchik | 0.128 - 3.618 | 0.382 - 2.618 | 1 | 0.618 - 3.618 |
Sea Pony | 0.128 - 3.618 | 0.382 - 0.5 | 1.618 - 2.618 | 0.618 - 3.618 |
Partizan | 0.128 - 3.618 | 0.382 | 1.618 | 0.618 - 3.618 |
TOTAL 1 | 0.382 - 0.786 | 0.382 - 0.886 | 1.272 - 2.618 | 0.786 - 0.886 |
TOTAL 2 | 0.382 - 0.786 | 0.382 - 0.886 | 1.618 - 3.618 | 1.128 - 1.618 |
TOTAL 3 | 0.276 - 0.618 | 1.128 - 2.618 | 1.272 - 2.618 | 0.618 - 0.886 |
TOTAL 4 | 0.382 - 0.786 | 1.128 - 2.618 | 1.618 - 2.618 | 1.128 - 1.272 |
TOTAL | 0.276 - 0.786 | 0.382 - 2.618 | 1.272 - 3.618 | 0.618 - 1.618 |
Partizan 2.1 | 0.128 - 3.618 | 1.128 | 1.618 | 0.618 - 3.618 |
Partizan 2.2 | 0.128 - 3.618 | 1.128 | 2.236 | 0.618 - 3.618 |
Partizan 2.3 | 0.128 - 3.618 | 0.618 - 1.618 | 1.618 | 0.618 - 3.618 |
Partizan 2.4 | 0.128 - 3.618 | 1.618 | 2.236 | 0.618 - 3.618 |
BG1 | 0.128 - 0.886 | 0.618 | 1.618 | 1 |
BG2 | 0.128 - 0.886 | 0.707 | 1.414 | 1 |
BG3 | 0.128 - 0.886 | 0.786 | 1.272 | 1 |
BG4 | 0.128 - 0.886 | 0.886 | 1.128 | 1 |
BG5 | 0.128 - 0.886 | 0.5 | 2 | 1 |
BG1 | 0.128 - 0.886 | 0.382 | 2.618 | 1 |
BG2 | 0.128 - 0.886 | 0.447 | 2.237 | 1 |
BG3 | 0.128 - 0.886 | 0.5 | 2 | 1 |
BG4 | 0.128 - 0.886 | 0.618 | 1.618 | 1 |
BG5 | 0.128 - 0.886 | 0.707 | 1.414 | 1 |
BG6 | 0.128 - 0.886 | 0.786 | 1.272 | 1 |
BG7 | 0.128 - 0.886 | 0.854 | 1.171 | 1 |
BG8 | 0.128 - 0.886 | 0.886 | 1.128 | 1 |
121 BG | 0.5 - 0.577 | 1.128 - 1.733 | 0.618 - 0.707 | 0.447 - 0.786 |
NN Gartley | 0.618 | 0.382 - 0.886 | 1.128 - 1.618 | 0.786 |
NN Bat | 0.382 - 0.5 | 0.382 - 0.886 | 1.618 - 2.618 | 0.886 |
NN Alt Bat | 0.382 | 0.382 - 0.886 | 2 - 4.236 | 1.128 |
NN Crab | 0.382 - 0.618 | 0.382 - 0.886 | 2.236 - 4.236 | 1.618 |
NN Deep Crab | 0.886 | 0.382 - 0.886 | 2.618 - 4.236 | 1.618 |
NN A Gartley | 0.618 - 0.786 | 1.128 - 2.618 | 1.618 | 1.272 |
NN A Bat | 0.382 - 0.618 | 1.128 - 2.618 | 2 - 2.618 | 1.128 |
NN A Alt Bat | 0.236 - 0.5 | 1.128 - 2.618 | 2.618 | 0.886 |
NN A Butterfly | 0.382 - 0.618 | 1.128 - 2.618 | 1.272 | 0.618 - 0.786 |
NN A Crab | 0.236 - 0.447 | 1.128 - 2.618 | 1.128 - 2.618 | 0.618 |
NN A Deep Crab | 0.236 - 0.382 | 1.128 - 2.618 | 1.128 | 0.618 |
NN Leo | 0.5 | 0.382 - 0.886 | 1.128 - 2.618 | 0.786 |
NN A Leo | 0.382 - 0.886 | 1.128 - 2.618 | 2 | 1.272 |
NN Total 1 | 0.382 - 0.786 | 0.382 - 0.886 | 1.272 - 2.618 | 0.786 - 0.886 |
NN Total 2 | 0.382 - 0.786 | 0.382 - 0.886 | 1.618 - 4.236 | 1.128 - 1.618 |
NN Total 3 | 0.236 - 0.618 | 1.128 - 2.618 | 1.272 - 2.618 | 0.618 - 0.886 |
NN Total 4 | 0.382 - 0.786 | 1.128 - 2.618 | 1.618 - 2.618 | 1.128 - 1.272 |
NN TOTAL *** | 0.236 - 0.786 | 0.382 - 2.618 | 1.272 - 4.236 | 0.618 - 1.618 |
NN Bl Swan | 1.382 - 2.618 | 0.236 - 0.5 | 1.128 - 2 | 1.128 - 2.618 |
NN Wh Swan | 0.382 - 0.724 | 2 - 4.236 | 0.5 - 0.886 | 0.382 - 0.886 |